China Standard CZPT OEM Car Accessories Pr21120-1006120 Pr21120-1006135 Pr21080-1006120 Auto Belt Tensioner Pulley for Lada Ba3 Vaz 2112 Gaz Uaz Kamaz Kalina Priora Oka Niva as thru axle

Product Description

What is a belt tensioner?
The tensioner is a belt tensioning device belonging to the automobile transmission system. It is mainly composed of a fixed housing, a tensioning arm, a wheel body, a torsion spring, a rolling bearing and a spring sleeve. The belt tensioner is used to adjust the tightness of the belt, reduce the vibration of the belt during operation and prevent the belt from slipping to a certain extent, ensuring the normal and stable operation of the transmission system. It is generally replaced together with the belt, idler and other cooperative accessories. The belt is a wearing part in automobile parts. When the belt is used for a long time, it is prone to wear. When the groove of the belt is worn deep and narrow, it will appear to be stretched. At this time, a hydraulic unit or damping needs to be performed through a tensioner. Spring, and the tensioner wheel can automatically adjust according to the degree of wear of the belt. Therefore, the belt tensioner wheel installed on the car can make the belt run more smoothly, reduce noise and prevent slipping.
The principle of belt tensioner:
The belt tensioner requires a certain amount of torque to maintain the proper tension of the belt during use and avoid belt slippage and elongation caused by aging or wear. When the belt tensioner is running, the belt can cause vibration in the tensioner, which will accelerate the wear of the belt and the tensioner. Therefore, in order to avoid this situation, we need to add a resistance mechanism to the tensioner. However, because the belt tensioner is affected by different parameters, its relationship with torque and resistance is complicated. The change in torque directly affects the change in resistance, and is the main factor affecting resistance. The parameters of the torsion spring are also the main factor affecting torque. Therefore, in order to better improve the resistance value of the belt tensioner, it is necessary to appropriately reduce the pitch diameter of the torsion spring.
The main function of the belt tensioner is to adjust the tightness of the timing belt, reduce the vibration of the belt during operation, prevent the belt from slipping and ensure the normal and stable operation of the transmission system. Although the belt tensioner pulley has powerful performance, its service life is short. Many car owners complain that the belt tensioner is broken before the belt is broken. When this happens, the timing belt and tensioner pulley should be replaced together. Therefore, HDAG tensioner suggest that under normal circumstances, the belt tensioner should be replaced every 3-5 years or about 80, PR21120-1 auto belt tensioner pulley for lada ba3 vaz 2112 gaz uaz kamaz Kalina Priora OKA niva 
 

Item Name          Auto or car belt tensioner, timing belt tensioner, belt pulley, idler pulley,
OEM/REF NO.              PR21120-1 PR21080-1 21126-6 211261
Car Model For lada ba3 vaz 2112 gaz uaz kamaz Kalina Priora OKA niva 
MOQ 50PCS/100PCS depend on car models and production details
Quality/Product parameters OEM standard or Design as sample or drawing
Payment Terms T/T, L/C, Credit card, Cash
Product Guarantee 1 Year or 50,000kms
Delivery Time 1. Sample: within 7 days if with stock roughcast                                                                    2. Batch : 30-45 days since receive deposit
Package 1.Neutral bag+inner box+master carton                     
2.Customize brand bag and box design AS REQUIRE+master carton                             
Notes: all master carton with woven bag to avoid broken during transit, offer pallets service if demand
Loading Port HangZhou/ZheJiang /HangZhou/HangZhou or pointed port

Reference our belt tensioner pulley packing way,we have full experience to supply different brands all over the world:

Our HDAG belt tensioner and pulley machining and production workshops:

HDAG belt tensioner pulley pull push force and tensile testing, assemble Testing, full size tolerance testing: 
I. We only do OEM, produce high precisional Auto belt tensioner, belt tensioner pulley, tensioner pulley, timing pulley, idler pulley, HALF SHAFT, WHEEL HUB BEARING, WHEEL BEARING, different with other factories

II.Quality guarantee: We promise to all of our old and new customers: ONE year guarantee or 50,000kms since B/L date, If we ship u wrong products or any quality problem, we will full compensation with free.

Customer visits

Contact Us
If you need high quality Auto belt tensioner, tensioner pulley, idler pulley, timing pulley, Wheel Bearing Hub bearing for passenger cars, or to be HDAG distributor or agent, please don’t hesitate to contact us.

Welcome contact us for sending interesting list by mail or Office ONE THREE NINE FIVE SEVEN SIX SIX SEVEN FIVE NINE SIX, THANKS   /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Three Years
Warranty: One Year
Type: OEM Standard
Material: St12 45# 40cr ADC12 Bearing Steel etc
Tolerance: OEM Standard
Certification: ISO/Ts16949
Customization:
Available

|

Customized Request

belt tensioner

Are there specific considerations for choosing belt tensioners in applications with varying loads or environmental conditions?

When selecting belt tensioners for applications with varying loads or environmental conditions, there are several specific considerations to keep in mind. The performance and longevity of belt tensioners can be influenced by the dynamic nature of the loads and the environmental factors they are exposed to. Here’s a detailed explanation of the considerations for choosing belt tensioners in such applications:

  • Load Capacity:
  • In applications with varying loads, it is crucial to select belt tensioners with an appropriate load capacity. The tensioner should be capable of exerting sufficient force to maintain the desired tension in the belt, even under the highest anticipated load conditions. It is important to consider the maximum peak loads, as well as any transient or shock loads that may occur during operation. Choosing a tensioner with an adequate load capacity ensures reliable and consistent tensioning performance, preventing issues like belt slippage or excessive wear.

  • Adjustability:
  • In applications where the loads vary significantly, having an adjustable belt tensioner can be beneficial. An adjustable tensioner allows for fine-tuning of the tensioning force to accommodate different load conditions. By adjusting the tensioner’s position or tension setting, the tension can be optimized for various load levels, ensuring proper belt engagement and tension throughout the operating range. This flexibility helps maintain optimal performance and reduces the risk of belt-related problems.

  • Temperature Range:
  • Environmental conditions, particularly temperature variations, can affect the performance and durability of belt tensioners. In applications with extreme temperature ranges, it is important to choose tensioners that can withstand the anticipated temperatures without compromising their functionality. High-temperature or low-temperature resistant materials and lubricants may be required to ensure that the tensioner operates reliably and maintains its mechanical properties within the specified temperature range.

  • Corrosion Resistance:
  • Applications exposed to harsh environments, such as those with high humidity, chemicals, or saltwater, require belt tensioners with excellent corrosion resistance. Corrosion-resistant materials, such as stainless steel or specialized coatings, should be considered to protect the tensioner from corrosion and degradation. This helps maintain the tensioner’s performance and extends its service life, even in challenging environmental conditions.

  • Contamination Protection:
  • In environments where the belt tensioner may be exposed to contaminants like dust, dirt, or debris, it is important to choose tensioners with effective contamination protection features. Seals, shields, or covers can be incorporated into the tensioner design to prevent the ingress of contaminants that could compromise the tensioner’s functionality or cause premature wear. Proper contamination protection helps ensure reliable performance and reduces the need for frequent maintenance or replacement.

  • Shock and Vibration Resistance:
  • Applications with significant shock or vibration levels require belt tensioners that can withstand these dynamic forces. Tensioners with robust construction, reinforced components, or dampening features can help absorb shocks and vibrations, reducing the risk of tensioner failure or damage. It is important to consider the expected shock and vibration levels in the application and select tensioners designed to handle such conditions.

  • Maintenance and Serviceability:
  • Applications with varying loads or challenging environmental conditions may require more frequent inspection and maintenance of the belt tensioners. When choosing tensioners, consider factors such as accessibility for inspection, ease of adjustment or replacement, and the availability of spare parts. Tensioners that are designed for easy maintenance and serviceability can help minimize downtime and ensure the continued performance of the belt-driven system.

In summary, choosing the right belt tensioners for applications with varying loads or environmental conditions requires considering factors such as load capacity, adjustability, temperature range, corrosion resistance, contamination protection, shock and vibration resistance, and maintenance/serviceability. By carefully evaluating these considerations and selecting tensioners that meet the specific requirements of the application, optimal performance, and longevity of the belt-driven system can be ensured.

belt tensioner

Can you explain the principles behind belt tensioner operation and adjustment?

Belt tensioners operate based on a set of principles aimed at maintaining the proper tension in belts. They are designed to apply and control the tension in the belt drive system, ensuring optimal performance and longevity. Here’s a detailed explanation of the principles behind belt tensioner operation and adjustment:

  • Tensioning Mechanism:
  • Belt tensioners typically consist of a mechanical mechanism that applies force to the belt, adjusting its tension. The tensioning mechanism can vary depending on the specific design and application. Common types of tensioners include spring-loaded tensioners, hydraulic tensioners, and automatic tensioners. These mechanisms are designed to exert a specific amount of force on the belt, maintaining the desired tension level.

  • Proper Tension Range:
  • Each belt has a specific tension range recommended by the manufacturer. This range ensures optimal power transmission, minimal slippage, and reduced wear. Belt tensioners are adjusted to operate within this recommended tension range. It is important to follow the manufacturer’s guidelines or specifications to determine the appropriate tension for a specific belt and application.

  • Belt Deflection:
  • During operation, belts experience a certain degree of deflection or sag between the pulleys. Belt tensioners account for this deflection and compensate for it by applying the appropriate tension. The tensioner mechanism is adjusted to ensure that the belt maintains the desired tension even when subjected to deflection. This helps to prevent excessive slack or tightness in the belt, optimizing power transmission and minimizing wear.

  • Adjustment and Maintenance:
  • Belt tensioners require periodic adjustment and maintenance to ensure optimal performance. The adjustment process involves inspecting the belt tension, evaluating its deflection, and making necessary adjustments to bring it within the recommended tension range. Tensioners may feature adjustment bolts, nuts, or other mechanisms that allow for precise tension adjustments. It is essential to follow the manufacturer’s instructions and use appropriate tools to adjust the tensioner correctly.

  • Monitoring and Inspection:
  • Regular monitoring and inspection of belt tensioners are crucial for their effective operation. This involves visually examining the tensioner for signs of wear, damage, or misalignment. It is also important to check the belt tension regularly using appropriate tension measuring tools or techniques. By monitoring the tensioner and the belt’s condition, any issues can be identified and addressed promptly, ensuring optimal tension and preventing potential problems.

  • Consideration of Environmental Factors:
  • Environmental factors such as temperature, humidity, and operating conditions can influence belt tension. Belt tensioners should be adjusted and maintained considering these factors. For example, temperature changes can cause the belt to expand or contract, affecting its tension. Tensioners may incorporate features to compensate for such variations, ensuring consistent tension under different environmental conditions.

In summary, belt tensioner operation and adjustment are based on principles that involve applying the appropriate tension to the belt, accounting for deflection, operating within the recommended tension range, and considering environmental factors. Tensioners are adjusted and maintained to ensure optimal power transmission, minimize wear, and prevent issues such as slippage or excessive tension. Regular monitoring and inspection of tensioners and belts are essential for their reliable operation and longevity.

belt tensioner

Can you describe the various types of belt tensioners, such as automatic or manual tensioners?

There are various types of belt tensioners available, each designed to fulfill specific requirements in maintaining belt tension. Here’s a description of the different types of belt tensioners:

  1. Manual Belt Tensioners:
  2. Manual belt tensioners are the most basic type and require manual adjustment to set and maintain the desired tension. They typically consist of an adjustable arm or bracket that can be moved to increase or decrease the tension in the belt. Manual tensioners are commonly used in applications where tension adjustments are infrequent or can be easily accessed for manual adjustment. They are simple, cost-effective, and widely used in various industries.

  3. Automatic Belt Tensioners:
  4. Automatic belt tensioners, also known as self-adjusting or spring-loaded tensioners, are designed to maintain the proper tension automatically. They incorporate a spring mechanism that applies constant tension to the belt, compensating for belt elongation and wear over time. Automatic tensioners are commonly used in applications where frequent manual adjustments are impractical or where consistent tension control is essential. They provide convenience, minimize maintenance requirements, and ensure optimal tension without the need for manual intervention.

  5. Hydraulic Belt Tensioners:
  6. Hydraulic belt tensioners utilize hydraulic pressure to maintain belt tension. They consist of a hydraulic cylinder or piston that applies force to the tensioner arm, adjusting the tension in the belt. Hydraulic tensioners are commonly used in applications with high load requirements or variable operating conditions. They provide precise tension control, can compensate for changes in temperature and load, and are often employed in heavy-duty industrial machinery and automotive applications.

  7. Eccentric Belt Tensioners:
  8. Eccentric belt tensioners use an eccentric mechanism to adjust the tension in the belt. They typically feature an eccentric pulley or roller that can be rotated to increase or decrease the tension. Eccentric tensioners are commonly used in applications where precise tension adjustments are required, such as high-performance engines or systems with specific belt tension specifications. They offer fine-tuning capabilities and are often found in automotive racing, performance tuning, and specialized machinery.

  9. Idler Pulley Tensioners:
  10. Idler pulley tensioners, also known as fixed tensioners or idler pulley assemblies, are a type of belt tensioner that utilizes an idler pulley to maintain tension. They are typically positioned on the slack side of the belt, providing guidance and tension control. Idler pulley tensioners are commonly used in applications where a fixed tension is desired, and the tensioning capability is provided by other components in the system, such as an automatic tensioner or an adjustable drive pulley.

In addition to these types, there are also specialized belt tensioners designed for specific applications or industries, such as torsional vibration dampers used in automotive engines to reduce vibrations, or belt tensioners with built-in dampening mechanisms to minimize noise in certain applications.

Overall, the choice of belt tensioner depends on factors such as the application requirements, load conditions, frequency of tension adjustments, and the desired level of automation and control. Selecting the appropriate type of belt tensioner is crucial to maintaining optimal belt tension and ensuring the efficient and reliable operation of belt-driven systems.

China Standard CZPT OEM Car Accessories Pr21120-1006120 Pr21120-1006135 Pr21080-1006120 Auto Belt Tensioner Pulley for Lada Ba3 Vaz 2112 Gaz Uaz Kamaz Kalina Priora Oka Niva   as thru axleChina Standard CZPT OEM Car Accessories Pr21120-1006120 Pr21120-1006135 Pr21080-1006120 Auto Belt Tensioner Pulley for Lada Ba3 Vaz 2112 Gaz Uaz Kamaz Kalina Priora Oka Niva   as thru axle
editor by CX 2024-05-14